Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation.

نویسندگان

  • Björn Behr
  • Chad Tang
  • Günter Germann
  • Michael T Longaker
  • Natalina Quarto
چکیده

Human adipose-derived stem cells (hASCs) are known for their capability to promote bone healing when applied to bone defects. For bone tissue regeneration, both sufficient angiogenesis and osteogenesis is desirable. Vascular endothelial growth factor A (VEGFA) has the potential to promote differentiation of common progenitor cells to both lineages. To test this hypothesis, the effects of VEGFA on hASCs during osteogenic differentiation were tested in vitro. In addition, hASCs were seeded in murine critical-sized calvarial defects locally treated with VEGFA. Our results suggest that VEGFA improves osteogenic differentiation in vitro as indicated by alkaline phosphatase activity, alizarin red staining, and quantitative real-time polymerase chain reaction analysis. Moreover, local application of VEGFA to hASCs significantly improved healing of critical-sized calvarial defects in vivo. This repair was accompanied by a striking enhancement of angiogenesis. Both paracrine and, to a lesser degree, cell-autonomous effects of VEGFA-treated hASCs were accountable for angiogenesis. These data were confirmed by using CD31(-) /CD45(-) mouse ASCs(GFP+) cells. In summary, we demonstrated that VEGFA increased osteogenic differentiation of hASCS in vitro and in vivo, which was accompanied by an enhancement of angiogenesis. Additionally, we showed that during bone regeneration, the increase in angiogenesis of hASCs on treatment with VEGFA was attributable to both paracrine and cell-autonomous effects. Thus, locally applied VEGFA might prove to be a valuable growth factor that can mediate both osteogenesis and angiogenesis of multipotent hASCs in the context of bone regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Umbilical Cord Lining Membrane-Derived Mesenchymal Stem Cells into Endothelial-Like Cells

Background: Stem cell therapy for the treatment of vascular-related diseases through functional revascularization is one of the most important research areas in tissue engineering. The aim of this study was to investigate the in vitro differentiation of umbilical CL-MSC into endothelial lineage cells. Methods: In this study, isolated cells were characterized for expression of MSC-specific marke...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

Human amnion-derived mesenchymal stem cells promote osteogenic and angiogenic differentiation of human adipose-derived stem cells

Tissue engineering using suitable mesenchymal stem cells (MSCs) shows great potential to regenerate bone defects. Our previous studies have indicated that human amnion-derived mesenchymal stem cells (HAMSCs) could promote the osteogenic differentiation of human bone marrow mesenchymal stem cells (HBMSCs). Human adipose-derived stem cells (HASCs), obtained from adipose tissue in abundance, are c...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

The Effect of Human Platelet-Rich Plasma on Adipose-Derived Stem Cell Proliferation and Osteogenic Differentiation

Background: The cultured mesenchymal stem cells (MSC) have been used in many clinical trials however, there are still some concerns about the cultural conditions. One concern is related to the use of FBS as a widely used xenogeneic supplement in the culture system. Human platelet-rich plasma (hPRP) is a candidate replacement for FBS. In this study, the effect of hPRP on MSC proliferation and os...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Stem cells

دوره 29 2  شماره 

صفحات  -

تاریخ انتشار 2011